← Blogs

Deriving the Schwarzschild Metric

January 4, 2026

  • general relativity
  • black holes
  • differential geometry

In this post I’ll be deriving one of the simplest spacetime metrics: the Schwarzschild Metric. It is named after Karl Schwarzschild who published the solution in 1916, just a little more than a month after the publication of Einstein’s Theory of General Relativity.

It is a metric for a mass that’s:

and it describes the metric for:

and it predicts:

So let’s get into it!


Einstein Field Equations

To find the metric, we first have to solve the Einstein Field Equations.

Rμν12RgμνΛgμν=8πGc4TμνR_{\mu \nu}-\frac{1}{2}Rg_{\mu \nu}-\Lambda g_{\mu \nu} = \frac{8 \pi G}{c^4} T_{\mu \nu}

We input the energy-momentum tensor and we get out the metric tensor. That is: we give the description of the mass-energy and momentum and we get the description of the geometry of spacetime.

Using the metric, we can find out the connection coefficients:

Γμνσ=12gσα(νgαμ+μgαναgμν)\Gamma _{\mu \nu}^{\sigma} = \frac{1}{2} g ^{\sigma \alpha}(\partial_{\nu} g_{\alpha \mu} + \partial_{\mu} g_{\alpha \nu} - \partial_{\alpha} g_{\mu \nu})

whence we can derive the geodesic equation which gives us the paths of masses and light:

d2xσdλ2+Γμνσdxμdλdxνdλ=0\frac{d^2 x^{\sigma}}{d \lambda^2}+\Gamma_{\mu \nu}^{\sigma} \frac{dx^{\mu}}{d \lambda}\cdot \frac{dx^{\nu}}{d \lambda} = 0

Tμν0T_{\mu \nu} \neq 0 inside the body, so let’s find the metric outside of our body where Tμν=0T_{\mu \nu} = 0. We can also assume that it’s at non-cosmological scales, i.e. Λ=0\Lambda = 0. So that gives us:

Rμν12Rgμν0=8πGc40R_{\mu \nu}-\frac{1}{2}Rg_{\mu \nu}- 0 = \frac{8 \pi G}{c^4} \cdot 0 Rμν12Rgμν=0R_{\mu \nu}-\frac{1}{2}Rg_{\mu \nu}= 0

Multiply both sides by the inverse metric:

Rμνgμν12Rgμνgμν=0R_{\mu \nu}g^{\mu \nu}-\frac{1}{2}Rg_{\mu \nu}g^{\mu \nu}= 0 Rμμ12Rδμμ=0R_{\mu}^{\mu}-\frac{1}{2}R \delta_{\mu}^{\mu}= 0 R12R4=0R-\frac{1}{2}R \cdot 4= 0 R=0R= 0 Rμν=0R_{\mu \nu}= 0

for vacuum outside the body. This property is called Ricci flat: there’s no immediate volume changes in test particles, there’s only squishing due to curvature of spacetime.

We’re going to assume that as we go farther away from the mass, the effects of gravity are going to be negligible (i.e. described by the Minkowski metric).

We’re also going to assume that the spacetime is static, which means that:

We can write this as:

et=(ct)(c(t))=(ct)=ete_t = \frac{\partial}{\partial(ct)} \rightarrow \frac{\partial}{\partial(c(-t))} = -\frac{\partial}{\partial(ct)} = -e_t gti=eteietei=gti    gti=gtig_{ti} = e_t\cdot e_i \rightarrow -e_t \cdot e_i = -g_{ti} \implies g_{ti}=-g_{ti} etei=0e_t\cdot e_i = 0 gtt=etet=(et)(et)=gttg_{tt}=e_t\cdot e_t=(-e_t)\cdot(-e_t)=g_{tt}

Putting all this together, we get:

ds2=A(r~)c2dt2+B(r~)dr~2+r~2(dθ2+sin2θdϕ2)ds^2=-A(\tilde{r})c^2dt^2+B(\tilde{r})d\tilde{r}^2+\tilde{r}^2(d\theta^2+\sin^2\theta d\phi^2)

Since we want spherical symmetry, the θ\theta and ϕ\phi components should use the metric for a sphere of radius rr. Hence, to not violate spherical symmetry, the metric becomes:

ds2=A(r~)c2dt2+B(r~)dr~2+r~2(dθ2+sin2θdϕ2)ds^2=-A(\tilde{r})c^2dt^2+B(\tilde{r})d\tilde{r}^2+\tilde{r}^2(d\theta^2+\sin^2\theta d\phi^2)

where C(r~)C(\tilde{r}) is a function that scales the values and is independent of θ\theta and ϕ\phi.

To make things look cleaner, let’s define:

C(r~)r~r\sqrt{C(\tilde{r})}\tilde{r} \equiv r

To find A(r)A(r) and B(r)B(r), we first have to find the metric tensor gμνg_{\mu \nu}, which we can use to find the connection coefficients Γμνσ\Gamma_{\mu \nu}^{\sigma}, which we can use to find the Ricci tensor RμνR_{\mu \nu}. Then we can force the metric to match Newtonian gravity at weak field and low velocity, hence solve for A(r)A(r) and B(r)B(r).

We can calculate the connection coefficients using:

Γμνσ=12gσα(νgαμ+μgαναgμν)\Gamma _{\mu \nu}^{\sigma} = \frac{1}{2} g ^{\sigma \alpha}(\partial_{\nu} g_{\alpha \mu} + \partial_{\mu} g_{\alpha \nu} - \partial_{\alpha} g_{\mu \nu})

Hence we can find the non-zero connection coefficients to be:

Γ010=Γ100=121A(rA),Γ001=121B(rA),Γ111=121B(rB),Γ221=rB,Γ331=rsin2(θ)B,Γ332=sin(θ)cos(θ),Γ212=Γ122=1r,Γ133=Γ313=1r,Γ233=Γ323=cot(θ)\Gamma_{01}^{0}=\Gamma_{10}^{0}=\frac{1}{2}\frac{1}{A}(\partial_r A), \Gamma_{00}^{1}=\frac{1}{2}\frac{1}{B}(\partial_r A), \Gamma_{11}^{1}=\frac{1}{2}\frac{1}{B}(\partial_r B), \Gamma_{22}^{1}=-\frac{r}{B}, \Gamma_{33}^{1}=-\frac{r \sin^2(\theta)}{B}, \Gamma_{33}^{2}=-\sin(\theta)\cos(\theta), \Gamma_{21}^{2}=\Gamma_{12}^{2}=\frac{1}{r}, \Gamma_{13}^{3}=\Gamma_{31}^{3}=\frac{1}{r}, \Gamma_{23}^{3}=\Gamma_{32}^{3}=\cot(\theta)

Since Rμν=0R_{\mu \nu}=0, that implies R00=R11=R22=0R_{00}=R_{11}=R_{22}=0. We can use this to solve for AA and BB.

The Riemann tensor is:

Rσμνρ=μΓνσρνΓμσρ+ΓνσαΓμαρΓμσβΓνβρR_{\sigma \mu \nu}^{\rho} = \partial_{\mu}\Gamma_{\nu \sigma}^{\rho}-\partial_{\nu}\Gamma_{\mu \sigma}^{\rho}+\Gamma_{\nu \sigma}^{\alpha}\Gamma_{\mu \alpha}^{\rho}-\Gamma_{\mu \sigma}^{\beta}\Gamma_{\nu \beta}^{\rho}

Hence, the Ricci tensor is obtained by contraction:

Rνδ=RνμδμR_{\nu \delta} = R_{\nu \mu \delta}^{\mu}

Calculating R00R_{00}

R00=R0μ0μ=μΓ00μ0 only for Γ0010Γμ0μ=0+Γ00αΓμαμ0 only for α=1(Γμ0βΓ0βμ)R_{00}= R_{0 \mu 0}^{\mu} = \underbrace{\partial_{\mu}\Gamma_{00}^{\mu}}_{\neq 0 \text{ only for }\Gamma_{00}^{1}}-\partial_{0}\underbrace{\Gamma_{\mu 0}^{\mu}}_{=0}+\underbrace{\Gamma_{00}^{\alpha}\Gamma_{\mu \alpha}^{\mu}}_{\neq 0 \text{ only for }\alpha = 1}-(\Gamma_{\mu 0}^{\beta}\Gamma_{0 \beta}^{\mu}) =1Γ0010+Γ001Γμ1μ(Γμ00Γ00μ+Γμ01Γ01μ)=\partial_{1}\Gamma_{00}^{1}-0+\Gamma_{00}^{1}\Gamma_{\mu 1}^{\mu}-(\Gamma_{\mu 0}^{0}\Gamma_{0 0}^{\mu}+\Gamma_{\mu 0}^{1}\Gamma_{01}^{\mu}) =1Γ001+Γ001Γ010+Γ001Γ111+Γ001Γ212+Γ001Γ313Γ212=Γ313Γ100Γ001Γ001Γ010=\partial_{1}\Gamma_{00}^{1}+\Gamma_{00}^{1}\Gamma_{0 1}^{0}+\Gamma_{00}^{1}\Gamma_{11}^{1}+\underbrace{\Gamma_{00}^{1}\Gamma_{21}^{2}+\Gamma_{00}^{1}\Gamma_{31}^{3}}_{\Gamma_{21}^{2}=\Gamma_{31}^{3}}-\Gamma_{10}^{0}\Gamma_{00}^{1}-\Gamma_{00}^{1}\Gamma_{01}^{0} =1Γ001+Γ001Γ111+2Γ001Γ212Γ100Γ001=\partial_{1}\Gamma_{00}^{1}+\Gamma_{00}^{1}\Gamma_{11}^{1}+2 \Gamma_{00}^{1}\Gamma_{21}^{2}-\Gamma_{10}^{0}\Gamma_{00}^{1}

Solving Rμν=0R_{\mu\nu}=0

From above, we are working with the static, spherically symmetric ansatz

ds2=A(r)c2dt2+B(r)dr2+r2(dθ2+sin2θdϕ2)ds^2=-A(r)c^2dt^2+B(r)dr^2+r^2(d\theta^2+\sin^2\theta\, d\phi^2)

where A(r)A(r) and B(r)B(r) are functions of rr only, and we want the vacuum equations

Rμν=0R_{\mu\nu}=0

It is standard to write derivatives with respect to rr using a prime:

A=dAdr,B=dBdr,A=d2Adr2A'=\frac{dA}{dr},\quad B'=\frac{dB}{dr},\quad A''=\frac{d^2A}{dr^2}

The Ricci components

Using the connection coefficients (Christoffels) computed earlier, the nontrivial Ricci components reduce to three independent equations. A convenient set is R00=0R_{00}=0, R11=0R_{11}=0, and R22=0R_{22}=0.

A standard simplification is to work with the mixed structure of these equations and write them in terms of A,BA,B and their derivatives. The results are:

The R00=0R_{00}=0 equation

R00=0R_{00}=0

is equivalent to

AAA2A(AA+BB)+2ArA=0\frac{A''}{A}-\frac{A'}{2A}\left(\frac{A'}{A}+\frac{B'}{B}\right)+\frac{2A'}{rA}=0

The R11=0R_{11}=0 equation

R11=0R_{11}=0

is equivalent to

AA+A2A(AA+BB)+2BrB=0-\frac{A''}{A}+\frac{A'}{2A}\left(\frac{A'}{A}+\frac{B'}{B}\right)+\frac{2B'}{rB}=0

The R22=0R_{22}=0 equation

R22=0R_{22}=0

is equivalent to

11B+r2B(AA+BB)=01-\frac{1}{B}+\frac{r}{2B}\left(-\frac{A'}{A}+\frac{B'}{B}\right)=0

(And R33=0R_{33}=0 gives the same condition as R22=0R_{22}=0, up to the sin2θ\sin^2\theta factor.)


First key simplification: A(r)B(r)=constantA(r)B(r)=\text{constant}

Add the R00=0R_{00}=0 and R11=0R_{11}=0 equations. The AA'' terms cancel, and the messy middle term cancels too, leaving a very simple relation:

2ArA+2BrB=0\frac{2A'}{rA}+\frac{2B'}{rB}=0

Multiply both sides by r/2r/2:

AA+BB=0\frac{A'}{A}+\frac{B'}{B}=0

This means

ddrln(AB)=0\frac{d}{dr}\ln(AB)=0

so

A(r)B(r)=CA(r)B(r)=C

for some constant CC.

Now we impose asymptotic flatness: far away from the mass, we want Minkowski space, so

A(r)1,B(r)1as rA(r)\to 1,\quad B(r)\to 1\quad \text{as } r\to\infty

Therefore

C=1C=1

and we get the important relation

B(r)=1A(r)B(r)=\frac{1}{A(r)}

So the metric becomes a 1-function ansatz:

ds2=A(r)c2dt2+1A(r)dr2+r2(dθ2+sin2θdϕ2)ds^2=-A(r)c^2dt^2+\frac{1}{A(r)}dr^2+r^2(d\theta^2+\sin^2\theta\, d\phi^2)

Solve for A(r)A(r) using R22=0R_{22}=0

Take the equation

11B+r2B(AA+BB)=01-\frac{1}{B}+\frac{r}{2B}\left(-\frac{A'}{A}+\frac{B'}{B}\right)=0

and substitute B=1/AB=1/A.

First note:

1B=A\frac{1}{B}=A

and also

BB=ddrlnB=ddrln(1A)=AA\frac{B'}{B}=\frac{d}{dr}\ln B=\frac{d}{dr}\ln\left(\frac{1}{A}\right)=-\frac{A'}{A}

So the bracket becomes

AA+BB=AAAA=2AA-\frac{A'}{A}+\frac{B'}{B}=-\frac{A'}{A}-\frac{A'}{A}=-\frac{2A'}{A}

Plugging into R22=0R_{22}=0 gives

1A+r2B(2AA)=01-A+\frac{r}{2B}\left(-\frac{2A'}{A}\right)=0

But B=1/AB=1/A, so 1B=A\frac{1}{B}=A and therefore 12B=A2\frac{1}{2B}=\frac{A}{2}. Hence

1A+r(A2)(2AA)=01-A+r\left(\frac{A}{2}\right)\left(-\frac{2A'}{A}\right)=0

The AA cancels nicely:

1ArA=01-A-rA'=0

Rewrite it as

rA+A=1rA'+A=1

This is a first-order ODE:

ddr(rA)=1\frac{d}{dr}(rA)=1

Integrate:

rA=r+KrA=r+K

so

A(r)=1+KrA(r)=1+\frac{K}{r}

Asymptotic flatness already ensured the 11 is correct. The remaining constant KK must be related to the mass.


Match to Newtonian gravity (weak-field limit)

In the weak field, the metric should reduce to Newtonian gravity. In particular, the time-time component behaves like

gtt(1+2Φ/c2)c2g_{tt}\approx -(1+2\Phi/c^2)c^2

where Φ\Phi is the Newtonian potential

Φ(r)=GMr\Phi(r)=-\frac{GM}{r}

In our metric,

gtt=A(r)c2g_{tt}=-A(r)c^2

So for large rr,

A(r)1+2Φc2=12GMc2rA(r)\approx 1+\frac{2\Phi}{c^2}=1-\frac{2GM}{c^2 r}

Comparing with

A(r)=1+KrA(r)=1+\frac{K}{r}

we identify

K=2GMc2K=-\frac{2GM}{c^2}

Therefore

A(r)=12GMc2rA(r)=1-\frac{2GM}{c^2 r}

and since B=1/AB=1/A,

B(r)=(12GMc2r)1B(r)=\left(1-\frac{2GM}{c^2 r}\right)^{-1}

The Schwarzschild metric

Substituting A(r)A(r) and B(r)B(r) back into the line element, we obtain the Schwarzschild metric:

ds2=(12GMc2r)c2dt2+(12GMc2r)1dr2+r2(dθ2+sin2θdϕ2)ds^2 =-\left(1-\frac{2GM}{c^2 r}\right)c^2dt^2 +\left(1-\frac{2GM}{c^2 r}\right)^{-1}dr^2 +r^2(d\theta^2+\sin^2\theta\, d\phi^2)

It is common to define the Schwarzschild radius

rs=2GMc2r_s=\frac{2GM}{c^2}

so the metric becomes

ds2=(1rsr)c2dt2+(1rsr)1dr2+r2(dθ2+sin2θdϕ2)ds^2 =-\left(1-\frac{r_s}{r}\right)c^2dt^2 +\left(1-\frac{r_s}{r}\right)^{-1}dr^2 +r^2(d\theta^2+\sin^2\theta\, d\phi^2)

The coordinate singularity at r=rsr=r_s corresponds to the event horizon of a non-rotating, uncharged black hole.


Beyond Schwarzschild: Other Black Hole Solutions

The Schwarzschild solution describes a very special case: a black hole that is non-rotating and uncharged.
In reality, more general black holes can carry electric charge, angular momentum, or both.

Remarkably, General Relativity admits exact analytic solutions for all these cases.

We will now derive (or at least motivate) the remaining classical black hole metrics.


Charged Black Holes: The Reissner–Nordström Metric

Physical setup

We now allow the black hole to carry an electric charge QQ, while still assuming:

This means the stress–energy tensor is not zero, but instead given by the electromagnetic field.


Einstein–Maxwell equations

The Einstein equations become:

Rμν12Rgμν=8πGc4Tμν(EM)R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}^{\text{(EM)}}

where the electromagnetic stress–energy tensor is

Tμν(EM)=1μ0(FμαFν α14gμνFαβFαβ)T_{\mu\nu}^{\text{(EM)}} = \frac{1}{\mu_0} \left( F_{\mu\alpha}F_{\nu}^{\ \alpha} - \frac{1}{4} g_{\mu\nu} F_{\alpha\beta}F^{\alpha\beta} \right)

with FμνF_{\mu\nu} the electromagnetic field tensor.

For a static, spherically symmetric charge distribution, the only nonzero component is the radial electric field:

E(r)=Q4πε0r2E(r)=\frac{Q}{4\pi \varepsilon_0 r^2}

Metric ansatz

Spherical symmetry again forces the metric to take the form

ds2=A(r)c2dt2+1A(r)dr2+r2(dθ2+sin2θdϕ2)ds^2 =-A(r)c^2dt^2 +\frac{1}{A(r)}dr^2 +r^2(d\theta^2+\sin^2\theta\, d\phi^2)

Solving the coupled Einstein–Maxwell equations yields

A(r)=12GMc2r+GQ24πε0c4r2A(r) =1-\frac{2GM}{c^2 r} +\frac{GQ^2}{4\pi \varepsilon_0 c^4 r^2}

Reissner–Nordström metric

The resulting line element is

ds2=(12GMc2r+GQ24πε0c4r2)c2dt2+(12GMc2r+GQ24πε0c4r2)1dr2+r2(dθ2+sin2θdϕ2)ds^2 =-\left( 1-\frac{2GM}{c^2 r} +\frac{GQ^2}{4\pi \varepsilon_0 c^4 r^2} \right)c^2dt^2 +\left( 1-\frac{2GM}{c^2 r} +\frac{GQ^2}{4\pi \varepsilon_0 c^4 r^2} \right)^{-1}dr^2 +r^2(d\theta^2+\sin^2\theta\, d\phi^2)

Horizons

The horizons are given by the roots of

A(r)=0A(r)=0

which yields

r±=GMc2±(GMc2)2GQ24πε0c4r_\pm =\frac{GM}{c^2} \pm \sqrt{ \left(\frac{GM}{c^2}\right)^2 -\frac{GQ^2}{4\pi \varepsilon_0 c^4} }

Rotating Black Holes: The Kerr Metric

Physical setup

Now we allow the black hole to rotate, but remain uncharged.
Rotation breaks spherical symmetry, leaving only:

This drastically complicates the geometry.


Boyer–Lindquist coordinates

The Kerr metric is most naturally expressed in Boyer–Lindquist coordinates
(t,r,θ,ϕ)(t, r, \theta, \phi).

Define:

a=JMca=\frac{J}{Mc}

where JJ is the angular momentum.

Also define the functions

Δ=r22GMc2r+a2\Delta=r^2-\frac{2GM}{c^2}r+a^2 ρ2=r2+a2cos2θ\rho^2=r^2+a^2\cos^2\theta

Kerr metric

The Kerr line element is

ds2=(12GMrc2ρ2)c2dt24GMarsin2θc2ρ2cdtdϕ+ρ2Δdr2+ρ2dθ2+(r2+a2+2GMa2rsin2θc2ρ2)sin2θdϕ2\begin{aligned} ds^2 =&-\left(1-\frac{2GMr}{c^2\rho^2}\right)c^2dt^2 -\frac{4GMar\sin^2\theta}{c^2\rho^2} \, c\,dt\,d\phi \\ &+\frac{\rho^2}{\Delta}dr^2 +\rho^2 d\theta^2 +\left(r^2+a^2+\frac{2GMa^2 r\sin^2\theta}{c^2\rho^2}\right)\sin^2\theta\, d\phi^2 \end{aligned}

Key features


Horizons

Horizons are again given by Δ=0\Delta=0:

r±=GMc2±(GMc2)2a2r_\pm =\frac{GM}{c^2} \pm \sqrt{\left(\frac{GM}{c^2}\right)^2-a^2}

Charged and Rotating: The Kerr–Newman Metric

The most general stationary black hole solution in four-dimensional GR is the Kerr–Newman metric.

It describes a black hole with:


Metric functions

Define

Δ=r22GMc2r+a2+GQ24πε0c4\Delta =r^2-\frac{2GM}{c^2}r+a^2+\frac{GQ^2}{4\pi\varepsilon_0 c^4}

and

ρ2=r2+a2cos2θ\rho^2=r^2+a^2\cos^2\theta

Kerr–Newman metric

The line element has the same form as Kerr, with Δ\Delta modified accordingly:

ds2=(12GMrc2ρ2+GQ24πε0c4ρ2)c2dt24GMarsin2θc2ρ2cdtdϕ+ρ2Δdr2+ρ2dθ2+(r2+a2+2GMa2rsin2θc2ρ2)sin2θdϕ2\begin{aligned} ds^2 =&-\left(1-\frac{2GMr}{c^2\rho^2} +\frac{GQ^2}{4\pi\varepsilon_0 c^4\rho^2}\right)c^2dt^2 \\ &-\frac{4GMar\sin^2\theta}{c^2\rho^2} \, c\,dt\,d\phi +\frac{\rho^2}{\Delta}dr^2 +\rho^2 d\theta^2 \\ &+\left(r^2+a^2+\frac{2GMa^2 r\sin^2\theta}{c^2\rho^2}\right)\sin^2\theta\, d\phi^2 \end{aligned}

Horizons and extremality

Horizons occur where Δ=0\Delta=0:

r±=GMc2±(GMc2)2a2GQ24πε0c4r_\pm =\frac{GM}{c^2} \pm \sqrt{ \left(\frac{GM}{c^2}\right)^2 -a^2 -\frac{GQ^2}{4\pi\varepsilon_0 c^4} }

The extremal condition is

a2+GQ24πε0c4=(GMc2)2a^2+\frac{GQ^2}{4\pi\varepsilon_0 c^4} =\left(\frac{GM}{c^2}\right)^2

Summary: The Black Hole Zoo

All classical black holes in four-dimensional GR fall into this family:

| Metric | Mass | Charge | Rotation | | ------------------ | ---- | ------ | -------- | | Schwarzschild | ✓ | ✗ | ✗ | | Reissner–Nordström | ✓ | ✓ | ✗ | | Kerr | ✓ | ✗ | ✓ | | Kerr–Newman | ✓ | ✓ | ✓ |

This remarkable result is summarized by the no-hair theorem:
black holes are completely characterized by just three parameters.